Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Language Scaling for Universal Suggested Replies Model (2106.02232v1)

Published 4 Jun 2021 in cs.CL and cs.AI

Abstract: We consider the problem of scaling automated suggested replies for Outlook email system to multiple languages. Faced with increased compute requirements and low resources for language expansion, we build a single universal model for improving the quality and reducing run-time costs of our production system. However, restricted data movement across regional centers prevents joint training across languages. To this end, we propose a multi-task continual learning framework, with auxiliary tasks and language adapters to learn universal language representation across regions. The experimental results show positive cross-lingual transfer across languages while reducing catastrophic forgetting across regions. Our online results on real user traffic show significant gains in CTR and characters saved, as well as 65% training cost reduction compared with per-LLMs. As a consequence, we have scaled the feature in multiple languages including low-resource markets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.