Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning from Counterfactual Links for Link Prediction (2106.02172v2)

Published 3 Jun 2021 in cs.LG

Abstract: Learning to predict missing links is important for many graph-based applications. Existing methods were designed to learn the association between observed graph structure and existence of link between a pair of nodes. However, the causal relationship between the two variables was largely ignored for learning to predict links on a graph. In this work, we visit this factor by asking a counterfactual question: "would the link still exist if the graph structure became different from observation?" Its answer, counterfactual links, will be able to augment the graph data for representation learning. To create these links, we employ causal models that consider the information (i.e., learned representations) of node pairs as context, global graph structural properties as treatment, and link existence as outcome. We propose a novel data augmentation-based link prediction method that creates counterfactual links and learns representations from both the observed and counterfactual links. Experiments on benchmark data show that our graph learning method achieves state-of-the-art performance on the task of link prediction.

Citations (84)

Summary

We haven't generated a summary for this paper yet.