Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Boosted Binary Histogram Ensemble for Large-scale Regression (2106.01986v1)

Published 3 Jun 2021 in stat.ML and cs.LG

Abstract: In this paper, we propose a gradient boosting algorithm for large-scale regression problems called \textit{Gradient Boosted Binary Histogram Ensemble} (GBBHE) based on binary histogram partition and ensemble learning. From the theoretical perspective, by assuming the H\"{o}lder continuity of the target function, we establish the statistical convergence rate of GBBHE in the space $C{0,\alpha}$ and $C{1,0}$, where a lower bound of the convergence rate for the base learner demonstrates the advantage of boosting. Moreover, in the space $C{1,0}$, we prove that the number of iterations to achieve the fast convergence rate can be reduced by using ensemble regressor as the base learner, which improves the computational efficiency. In the experiments, compared with other state-of-the-art algorithms such as gradient boosted regression tree (GBRT), Breiman's forest, and kernel-based methods, our GBBHE algorithm shows promising performance with less running time on large-scale datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.