Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Granger Causality from Quantized Measurements (2106.01513v2)

Published 3 Jun 2021 in eess.SY and cs.SY

Abstract: An approach is proposed for inferring Granger causality between jointly stationary, Gaussian signals from quantized data. First, a necessary and sufficient rank criterion for the equality of two conditional Gaussian distributions is proved. Assuming a partial finite-order Markov property, a characterization of Granger causality in terms of the rank of a matrix involving the covariances is presented. We call this the causality matrix. The smallest singular value of the causality matrix gives a lower bound on the distance between the two conditional Gaussian distributions appearing in the definition of Granger causality and yields a new measure of causality. Then, conditions are derived under which Granger causality between jointly Gaussian processes can be reliably inferred from the second order moments of quantized measurements. A necessary and sufficient condition is proposed for Granger causality inference under binary quantization. Furthermore, sufficient conditions are introduced to infer Granger causality between jointly Gaussian signals through measurements quantized via non-uniform, uniform or high resolution quantizers. Apart from the assumed partial Markov order and joint Gaussianity, this approach does not require the parameters of a system model to be identified. No assumptions are made on the identifiability of the jointly Gaussian random processes through the quantized observations. The effectiveness of the proposed method is illustrated by simulation results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.