Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nudge: Stochastically Improving upon FCFS (2106.01492v1)

Published 2 Jun 2021 in cs.PF and math.PR

Abstract: The First-Come First-Served (FCFS) scheduling policy is the most popular scheduling algorithm used in practice. Furthermore, its usage is theoretically validated: for light-tailed job size distributions, FCFS has weakly optimal asymptotic tail of response time. But what if we don't just care about the asymptotic tail? What if we also care about the 99th percentile of response time, or the fraction of jobs that complete in under one second? Is FCFS still best? Outside of the asymptotic regime, only loose bounds on the tail of FCFS are known, and optimality is completely open. In this paper, we introduce a new policy, Nudge, which is the first policy to provably stochastically improve upon FCFS. We prove that Nudge simultaneously improves upon FCFS at every point along the tail, for light-tailed job size distributions. As a result, Nudge outperforms FCFS for every moment and every percentile of response time. Moreover, Nudge provides a multiplicative improvement over FCFS in the asymptotic tail. This resolves a long-standing open problem by showing that, counter to previous conjecture, FCFS is not strongly asymptotically optimal.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com