Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-End Hierarchical Relation Extraction for Generic Form Understanding (2106.00980v1)

Published 2 Jun 2021 in cs.AI

Abstract: Form understanding is a challenging problem which aims to recognize semantic entities from the input document and their hierarchical relations. Previous approaches face significant difficulty dealing with the complexity of the task, thus treat these objectives separately. To this end, we present a novel deep neural network to jointly perform both entity detection and link prediction in an end-to-end fashion. Our model extends the Multi-stage Attentional U-Net architecture with the Part-Intensity Fields and Part-Association Fields for link prediction, enriching the spatial information flow with the additional supervision from entity linking. We demonstrate the effectiveness of the model on the Form Understanding in Noisy Scanned Documents (FUNSD) dataset, where our method substantially outperforms the original model and state-of-the-art baselines in both Entity Labeling and Entity Linking task.

Citations (10)

Summary

We haven't generated a summary for this paper yet.