Stacked Grenander and rearrangement estimators of a discrete distribution
Abstract: In this paper we consider the stacking of isotonic regression and the method of rearrangement with the empirical estimator to estimate a discrete distribution with an infinite support. The estimators are proved to be strongly consistent with $\sqrt{n}$-rate of convergence. We obtain the asymptotic distributions of the estimators and construct the asymptotically correct conservative global confidence bands. We show that stacked Grenander estimator outperforms the stacked rearrangement estimator. The new estimators behave well even for small sized data sets and provide a trade-off between goodness-of-fit and shape constraints.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.