Papers
Topics
Authors
Recent
2000 character limit reached

Supervised Speech Representation Learning for Parkinson's Disease Classification

Published 1 Jun 2021 in eess.AS and cs.SD | (2106.00531v2)

Abstract: Recently proposed automatic pathological speech classification techniques use unsupervised auto-encoders to obtain a high-level abstract representation of speech. Since these representations are learned based on reconstructing the input, there is no guarantee that they are robust to pathology-unrelated cues such as speaker identity information. Further, these representations are not necessarily discriminative for pathology detection. In this paper, we exploit supervised auto-encoders to extract robust and discriminative speech representations for Parkinson's disease classification. To reduce the influence of speaker variabilities unrelated to pathology, we propose to obtain speaker identity-invariant representations by adversarial training of an auto-encoder and a speaker identification task. To obtain a discriminative representation, we propose to jointly train an auto-encoder and a pathological speech classifier. Experimental results on a Spanish database show that the proposed supervised representation learning methods yield more robust and discriminative representations for automatically classifying Parkinson's disease speech, outperforming the baseline unsupervised representation learning system.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.