Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A non-separable first-order spatio-temporal intensity for events on linear networks: an application to ambulance interventions (2106.00457v3)

Published 1 Jun 2021 in stat.AP and stat.ME

Abstract: The algorithms used for the optimal management of an ambulance fleet require an accurate description of the spatio-temporal evolution of the emergency events. In the last years, several authors have proposed sophisticated statistical approaches to forecast ambulance dispatches, typically modelling the data as a point pattern occurring on a planar region. Nevertheless, ambulance interventions can be more appropriately modelled as a realisation of a point process occurring on a linear network. The constrained spatial domain raises specific challenges and unique methodological problems that cannot be ignored when developing a proper statistical approach. Hence, this paper proposes a spatio-temporal model to analyse ambulance dispatches focusing on the interventions that occurred in the road network of Milan (Italy) from 2015 to 2017. We adopt a non-separable first-order intensity function with spatial and temporal terms. The temporal dimension is estimated semi-parametrically using a Poisson regression model, while the spatial dimension is estimated non-parametrically using a network kernel function. A set of weights is included in the spatial term to capture space-time interactions, inducing non-separability in the intensity function. A series of tests show that our approach successfully models the ambulance interventions and captures the space-time patterns more accurately than planar or separable point process models.

Summary

We haven't generated a summary for this paper yet.