Papers
Topics
Authors
Recent
2000 character limit reached

Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets: Theory and Computation

Published 1 Jun 2021 in math.OC | (2106.00301v2)

Abstract: We propose a method to generate cutting-planes from multiple covers of knapsack constraints. The covers may come from different knapsack inequalities if the weights in the inequalities form a totally-ordered set. Thus, we introduce and study the structure of a totally-ordered multiple knapsack set. The valid multi-cover inequalities we derive for its convex hull have a number of interesting properties. First, they generalize the well-known (1, k)-configuration inequalities. Second, they are not aggregation cuts. Third, they cannot be generated as a rank-1 Chvatal-Gomory cut from the inequality system consisting of the knapsack constraints and all their minimal cover inequalities. We also provide conditions under which the inequalities are facets for the convex hull of the totally-ordered knapsack set, as well as conditions for those inequalities to fully characterize its convex hull. We give an integer program to solve the separation and provide numerical experiments that showcase the strength of these new inequalities.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.