Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From ETH to algebraic relaxation of OTOCs in systems with conserved quantities (2106.00234v2)

Published 1 Jun 2021 in cond-mat.stat-mech, cond-mat.quant-gas, and quant-ph

Abstract: The relaxation of out-of-time-ordered correlators (OTOCs) has been studied as a mean to characterize the scrambling properties of a quantum system. We show that the presence of local conserved quantities typically results in, at the fastest, an algebraic relaxation of the OTOC provided (i) the dynamics is local and (ii) the system follows the eigenstate thermalization hypothesis. Our result relies on the algebraic scaling of the infinite-time value of OTOCs with system size, which is typical in thermalizing systems with local conserved quantities, and on the existence of finite speed of propagation of correlations for finite-range-interaction systems. We show that time-independence of the Hamiltonian is not necessary as the above conditions (i) and (ii) can occur in time-dependent systems, both periodic or aperiodic. We also remark that our result can be extended to systems with power-law interactions.

Citations (17)

Summary

We haven't generated a summary for this paper yet.