Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local variants of the Dixmier property and weak centrality for C*-algebras (2106.00098v1)

Published 31 May 2021 in math.OA

Abstract: We study variants of the Dixmier property that apply to elements of a unital C*-algebra, rather than to the C*-algebra itself. By a Dixmier element in a C*-algebra we understand one that can be averaged into a central element by means of a sequence of unitary mixing operators. Examples include all self-commutators and all quasinilpotent elements. We do a parallel study of an element-wise version of weak centrality, where the averaging to the centre is done using unital completely positive elementary operators (as in Magajna's characterization of weak centrality). We also obtain complete descriptions of more tractable sets of elements, where the corresponding averaging can be done arbitrarily close to the centre. This is achieved through several "spectral conditions", involving numerical ranges and tracial states.

Summary

We haven't generated a summary for this paper yet.