Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Algorithms for Multiwinner Elections and the Chamberlin-Courant Rule (2106.00091v1)

Published 31 May 2021 in cs.GT, cs.DS, and econ.TH

Abstract: We consider the algorithmic question of choosing a subset of candidates of a given size $k$ from a set of $m$ candidates, with knowledge of voters' ordinal rankings over all candidates. We consider the well-known and classic scoring rule for achieving diverse representation: the Chamberlin-Courant (CC) or $1$-Borda rule, where the score of a committee is the average over the voters, of the rank of the best candidate in the committee for that voter; and its generalization to the average of the top $s$ best candidates, called the $s$-Borda rule. Our first result is an improved analysis of the natural and well-studied greedy heuristic. We show that greedy achieves a $\left(1 - \frac{2}{k+1}\right)$-approximation to the maximization (or satisfaction) version of CC rule, and a $\left(1 - \frac{2s}{k+1}\right)$-approximation to the $s$-Borda score. Our result improves on the best known approximation algorithm for this problem. We show that these bounds are almost tight. For the dissatisfaction (or minimization) version of the problem, we show that the score of $\frac{m+1}{k+1}$ can be viewed as an optimal benchmark for the CC rule, as it is essentially the best achievable score of any polynomial-time algorithm even when the optimal score is a polynomial factor smaller (under standard computational complexity assumptions). We show that another well-studied algorithm for this problem, called the Banzhaf rule, attains this benchmark. We finally show that for the $s$-Borda rule, when the optimal value is small, these algorithms can be improved by a factor of $\tilde \Omega(\sqrt{s})$ via LP rounding. Our upper and lower bounds are a significant improvement over previous results, and taken together, not only enable us to perform a finer comparison of greedy algorithms for these problems, but also provide analytic justification for using such algorithms in practice.

Citations (5)

Summary

We haven't generated a summary for this paper yet.