Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

System-aware dynamic partitioning for batch and streaming workloads (2105.15023v1)

Published 31 May 2021 in cs.DC

Abstract: When processing data streams with highly skewed and nonstationary key distributions, we often observe overloaded partitions when the hash partitioning fails to balance data correctly. To avoid slow tasks that delay the completion of the whole stage of computation, it is necessary to apply adaptive, on-the-fly partitioning that continuously recomputes an optimal partitioner, given the observed key distribution. While such solutions exist for batch processing of static data sets and stateless stream processing, the task is difficult for long-running stateful streaming jobs where key distribution changes over time. Careful checkpointing and operator state migration is necessary to change the partitioning while the operation is running. Our key result is a lightweight on-the-fly Dynamic Repartitioning (DR) module for distributed data processing systems (DDPS), including Apache Spark and Flink, which improves the performance with negligible overhead. DR can adaptively repartition data during execution using our Key Isolator Partitioner (KIP). In our experiments with real workloads and power-law distributions, we reach a speedup of 1.5-6 for a variety of Spark and Flink jobs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.