Emergence and algorithmic information dynamics of systems and observers (2105.14707v4)
Abstract: Previous work has shown that perturbation analysis in software space can produce candidate computable generative models and uncover possible causal properties from the finite description of an object or system quantifying the algorithmic contribution of each of its elements relative to the whole. One of the challenges for defining emergence is that one observer's prior knowledge may cause a phenomenon to present itself to such observer as emergent while for another as reducible. By formalising the act of observing as mutual perturbations between dynamical systems, we demonstrate that emergence of algorithmic information do depend on the observer's formal knowledge, while robust to other subjective factors, particularly: the choice of the programming language and the measurement method; errors or distortions during the information acquisition; and the informational cost of processing. This is called observer-dependent emergence (ODE). In addition, we demonstrate that the unbounded and fast increase of emergent algorithmic information implies asymptotically observer-independent emergence (AOIE). Unlike ODE, AOIE is a type of emergence for which emergent phenomena will remain considered to be emergent for every formal theory that any observer might devise. We demonstrate the existence of an evolutionary model that displays the diachronic variant of AOIE and a network model that displays the holistic variant of AOIE. Our results show that, restricted to the context of finite discrete deterministic dynamical systems, computable systems, and irreducible information content measures, AOIE is the strongest form of emergence that formal theories can attain.