Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparison of Functional Principal Component Analysis Methods with Accelerometry Applications (2105.14649v1)

Published 30 May 2021 in stat.AP

Abstract: The association between a person's physical activity and various health outcomes is an area of active research. The National Health and Nutrition Examination Survey (NHANES) data provide a valuable resource for studying these associations. NHANES accelerometry data has been used by many to measure individuals' activity levels. A common approach for analyzing accelerometry data is functional principal component analysis (FPCA). The first part of the paper uses Poisson FPCA (PFPCA), Gaussian FPCA (GFPCA), and nonnegative and regularized function decomposition (NARFD) to extract features from the count-valued NHANES accelerometry data. The second part of the paper compares logistic regression, random forests, and AdaBoost models based on GFPCA, NARFD, or PFPCA scores in the context of mortality prediction. The results show that Poisson FPCA is the best FPCA model for the inference of accelerometry data, and the AdaBoost model based on Poisson FPCA scores gives the best mortality prediction results.

Summary

We haven't generated a summary for this paper yet.