Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safety Embedded Differential Dynamic Programming Using Discrete Barrier States (2105.14608v4)

Published 30 May 2021 in cs.RO, cs.SY, and eess.SY

Abstract: Certified safe control is a growing challenge in robotics, especially when performance and safety objectives must be concurrently achieved. In this work, we extend the barrier state (BaS) concept, recently proposed for safe stabilization of continuous time systems, to safety embedded trajectory optimization for discrete time systems using discrete barrier states (DBaS). The constructed DBaS is embedded into the discrete model of the safety-critical system integrating safety objectives into the system's dynamics and performance objectives. Thereby, the control policy is directly supplied by safety-critical information through the barrier state. This allows us to employ the DBaS with differential dynamic programming (DDP) to plan and execute safe optimal trajectories. The proposed algorithm is leveraged on various safety-critical control and planning problems including a differential wheeled robot safe navigation in randomized and complex environments and on a quadrotor to safely perform reaching and tracking tasks. The DBaS-based DDP (DBaS-DDP) is shown to consistently outperform penalty methods commonly used to approximate constrained DDP problems as well as CBF-based safety filters.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com