Robust Hypothesis Testing with Wasserstein Uncertainty Sets (2105.14348v1)
Abstract: We consider a data-driven robust hypothesis test where the optimal test will minimize the worst-case performance regarding distributions that are close to the empirical distributions with respect to the Wasserstein distance. This leads to a new non-parametric hypothesis testing framework based on distributionally robust optimization, which is more robust when there are limited samples for one or both hypotheses. Such a scenario often arises from applications such as health care, online change-point detection, and anomaly detection. We study the computational and statistical properties of the proposed test by presenting a tractable convex reformulation of the original infinite-dimensional variational problem exploiting Wasserstein's properties and characterizing the radii selection for the uncertainty sets. We also demonstrate the good performance of our method on synthetic and real data.