Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Nonlinear Transform-Based Tensor Nuclear Norm for Multi-Dimensional Image Recovery (2105.14320v1)

Published 29 May 2021 in eess.IV and cs.CV

Abstract: In this paper, we study multi-dimensional image recovery. Recently, transform-based tensor nuclear norm minimization methods are considered to capture low-rank tensor structures to recover third-order tensors in multi-dimensional image processing applications. The main characteristic of such methods is to perform the linear transform along the third mode of third-order tensors, and then compute tensor nuclear norm minimization on the transformed tensor so that the underlying low-rank tensors can be recovered. The main aim of this paper is to propose a nonlinear multilayer neural network to learn a nonlinear transform via the observed tensor data under self-supervision. The proposed network makes use of low-rank representation of transformed tensors and data-fitting between the observed tensor and the reconstructed tensor to construct the nonlinear transformation. Extensive experimental results on tensor completion, background subtraction, robust tensor completion, and snapshot compressive imaging are presented to demonstrate that the performance of the proposed method is better than that of state-of-the-art methods.

Citations (45)

Summary

We haven't generated a summary for this paper yet.