Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient and robust multi-task learning in the brain with modular latent primitives (2105.14108v2)

Published 28 May 2021 in cs.AI and q-bio.NC

Abstract: Biological agents do not have infinite resources to learn new things. For this reason, a central aspect of human learning is the ability to recycle previously acquired knowledge in a way that allows for faster, less resource-intensive acquisition of new skills. In spite of that, how neural networks in the brain leverage existing knowledge to learn new computations is not well understood. In this work, we study this question in artificial recurrent neural networks (RNNs) trained on a corpus of commonly used neuroscience tasks. Combining brain-inspired inductive biases we call functional and structural, we propose a system that learns new tasks by building on top of pre-trained latent dynamics organised into separate recurrent modules. These modules, acting as prior knowledge acquired previously through evolution or development, are pre-trained on the statistics of the full corpus of tasks so as to be independent and maximally informative. The resulting model, we call a Modular Latent Primitives (MoLaP) network, allows for learning multiple tasks while keeping parameter counts, and updates, low. We also show that the skills acquired with our approach are more robust to a broad range of perturbations compared to those acquired with other multi-task learning strategies, and that generalisation to new tasks is facilitated. This work offers a new perspective on achieving efficient multi-task learning in the brain, illustrating the benefits of leveraging pre-trained latent dynamical primitives.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Christian David Márton (1 paper)
  2. Léo Gagnon (5 papers)
  3. Guillaume Lajoie (58 papers)
  4. Kanaka Rajan (12 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.