Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Wits Intelligent Teaching System: Detecting Student Engagement During Lectures Using Convolutional Neural Networks (2105.13794v1)

Published 28 May 2021 in cs.CV

Abstract: To perform contingent teaching and be responsive to students' needs during class, lecturers must be able to quickly assess the state of their audience. While effective teachers are able to gauge easily the affective state of the students, as class sizes grow this becomes increasingly difficult and less precise. The Wits Intelligent Teaching System (WITS) aims to assist lecturers with real-time feedback regarding student affect. The focus is primarily on recognising engagement or lack thereof. Student engagement is labelled based on behaviour and postures that are common to classroom settings. These proxies are then used in an observational checklist to construct a dataset of engagement upon which a CNN based on AlexNet is successfully trained and which significantly outperforms a Support Vector Machine approach. The deep learning approach provides satisfactory results on a challenging, real-world dataset with significant occlusion, lighting and resolution constraints.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Richard Klein (18 papers)
  2. Turgay Celik (9 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.