Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integral representations of isotropic semi-classical functions and applications (2105.13571v1)

Published 28 May 2021 in math.AP, math-ph, math.MP, and math.SP

Abstract: In \cite{GUW} we introduced a class of "semi-classical functions of isotropic type", starting with a model case and applying Fourier integral operators associated with canonical transformations. These functions are a substantial generalization of the "oscillatory functions of Lagrangian type" that have played major role in semi-classical and micro-local analysis. In this paper we exhibit more clearly the nature of these isotropic functions by obtaining oscillatory integral expressions for them. Then we use these to prove that the classes of isotropic functions are equivariant with respect to the action of general FIOs (under the usual clean-intersection hypothesis). The simplest examples of isotropic states are the "coherent states", a class of oscillatory functions that has played a pivotal role in mathematics and theoretical physics beginning with their introduction by of Schr\"odinger in the 1920's. We prove that every oscillatory function of isotropic type can be expressed as a superposition of coherent states, and examine some implications of that fact. We also show that certain functions of elliptic operators have isotropic functions for Schwartz kernels. This lead us to a result on an eigenvalue counting function that appears to be new (Corollary \ref{cor:altWeyl}).

Summary

We haven't generated a summary for this paper yet.