Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inertial Sensor Data To Image Encoding For Human Action Recognition (2105.13533v1)

Published 28 May 2021 in cs.CV, cs.HC, cs.LG, and eess.SP

Abstract: Convolutional Neural Networks (CNNs) are successful deep learning models in the field of computer vision. To get the maximum advantage of CNN model for Human Action Recognition (HAR) using inertial sensor data, in this paper, we use 4 types of spatial domain methods for transforming inertial sensor data to activity images, which are then utilized in a novel fusion framework. These four types of activity images are Signal Images (SI), Gramian Angular Field (GAF) Images, Markov Transition Field (MTF) Images and Recurrence Plot (RP) Images. Furthermore, for creating a multimodal fusion framework and to exploit activity image, we made each type of activity images multimodal by convolving with two spatial domain filters : Prewitt filter and High-boost filter. Resnet-18, a CNN model, is used to learn deep features from multi-modalities. Learned features are extracted from the last pooling layer of each ReNet and then fused by canonical correlation based fusion (CCF) for improving the accuracy of human action recognition. These highly informative features are served as input to a multiclass Support Vector Machine (SVM). Experimental results on three publicly available inertial datasets show the superiority of the proposed method over the current state-of-the-art.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zeeshan Ahmad (34 papers)
  2. Naimul Khan (36 papers)
Citations (32)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com