Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reduced Complexity Neural Network Equalizers for Two-dimensional Magnetic Recording (2105.13508v3)

Published 27 May 2021 in eess.SP, cs.SY, and eess.SY

Abstract: This paper investigates reduced complexity neural network (NN) based architectures for equalization over the two-dimension magnetic recording (TDMR) digital communication channel for data storage. We use realistic waveforms measured from a hard disk drive (HDD) with TDMR technology. We show that the multilayer perceptron (MLP) non-linear equalizer achieves a $10.91\%$ reduction in bit error rate (BER) over the linear equalizer with cross-entropy-based optimization. However, the MLP equalizer's complexity is $6.6$ times the linear equalizer's complexity. Thus, we propose reduced complexity MLP (RC-MLP) equalizers. Each RC-MLP variant consists of finite-impulse response filters, a non-linear activation, and a hidden delay line. A proposed RC-MLP variant entails only $1.59$ times the linear equalizer's complexity while achieving a $8.23\%$ reduction in BER over the linear equalizer.

Citations (2)

Summary

We haven't generated a summary for this paper yet.