Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
107 tokens/sec
Gemini 2.5 Pro Premium
58 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
84 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

Training With Data Dependent Dynamic Learning Rates (2105.13464v1)

Published 27 May 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Recently many first and second order variants of SGD have been proposed to facilitate training of Deep Neural Networks (DNNs). A common limitation of these works stem from the fact that they use the same learning rate across all instances present in the dataset. This setting is widely adopted under the assumption that loss functions for each instance are similar in nature, and hence, a common learning rate can be used. In this work, we relax this assumption and propose an optimization framework which accounts for difference in loss function characteristics across instances. More specifically, our optimizer learns a dynamic learning rate for each instance present in the dataset. Learning a dynamic learning rate for each instance allows our optimization framework to focus on different modes of training data during optimization. When applied to an image classification task, across different CNN architectures, learning dynamic learning rates leads to consistent gains over standard optimizers. When applied to a dataset containing corrupt instances, our framework reduces the learning rates on noisy instances, and improves over the state-of-the-art. Finally, we show that our optimization framework can be used for personalization of a machine learning model towards a known targeted data distribution.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.