Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimal extensions of Tannakian categories in positive characteristic (2105.13436v2)

Published 27 May 2021 in math.QA and math.RA

Abstract: We extend \cite[Theorem 4.5]{DGNO} and \cite[Theorem 4.22]{LKW} to positive characteristic (i.e., to the finite, not necessarily fusion, case). Namely, we prove that if $\D$ is a finite non-degenerate braided tensor category over an algebraically closed field $k$ of characteristic $p>0$, containing a Tannakian Lagrangian subcategory $\Rep(G)$, where $G$ is a finite $k$-group scheme, then $\D$ is braided tensor equivalent to $\Rep(D{\omega}(G))$ for some $\omega\in H3(G,\mathbb{G}_m)$, where $D{\omega}(G)$ denotes the twisted double of $G$ \cite{G2}. We then prove that the group $\mathcal{M}{{\rm ext}}(\Rep(G))$ of minimal extensions of $\Rep(G)$ is isomorphic to the group $H3(G,\mathbb{G}_m)$. In particular, we use \cite{EG2,FP} to show that $\mathcal{M}{\rm ext}(\Rep(\mu_p))=1$, $\mathcal{M}{\rm ext}(\Rep(\alpha_p))$ is infinite, and if $\O(\Gamma)*=u(\g)$ for a semisimple restricted $p$-Lie algebra $\g$, then $\mathcal{M}{\rm ext}(\Rep(\Gamma))=1$ and $\mathcal{M}_{\rm ext}(\Rep(\Gamma\times \alpha_p))\cong \g{*(1)}$.

Summary

We haven't generated a summary for this paper yet.