Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix coefficients of intertwining operators and the Bruhat order (2105.13075v1)

Published 27 May 2021 in math.RT and math.CO

Abstract: Let $(\pi_{\mathbf{z}},V_{\mathbf{z}})$ be an unramified principal series representation of a reductive group over a nonarchimedean local field, parametrized by an element $\mathbf{z}$ of the maximal torus in the Langlands dual group. If $v$ is an element of the Weyl group $W$, then the standard intertwining integral $\mathcal{A}v$ maps $V{\mathbf{z}}$ to $V_{v\mathbf{z}}$. Letting $\psi{\mathbf{z}}_w$ with $w\in W$ be a suitable basis of the Iwahori fixed vectors in $V_{\mathbf{z}}$, and $\widehat\psi{\mathbf{z}}_w$ a basis of the contragredient representation, we define $\sigma(u,v,w)$ (for $u,v,w\in W$) to be $\langle \mathcal{A}v\psi_u{\mathbf{z}},\widehat\psi{v\mathbf{z}}_w\rangle$. This is an interesting function and we initiate its study. We show that given $u$ and $w$, there is a minimal $v$ such that $\sigma(u,v,w)\neq 0$. Denoting this $v$ as $v\hbox{min}=v_\hbox{min}(u,w)$, we will prove that $\sigma(u,v_\hbox{min},w)$ is a polynomial of the cardinality $q$ of the residue field. Indeed if $v>v_\hbox{min}$, then $\sigma(u,v,w)$ is a rational function of $\mathbf{z}$ and $q$, whose denominator we describe. But if $v=v_\hbox{min}$, the dependence on $\mathbf{z}$ disappears. We will express $\sigma(u,v_\hbox{min},w)$ as the Poincar\'e polynomial of a Bruhat interval. The proof leads to fairly intricate considerations of the Bruhat order. Thus our results require us to prove some facts that may be of independent interest, relating the Bruhat order $\leqslant$ and the weak Bruhat order $\leqslant_R$. For example we will prove (for finite Coxeter groups) the following "mixed meet" property. If $u, w$ are elements of $W$, then there exists a unique element $m \in W$ that is maximal with respect to the condition that $m \leqslant_R u$ and $m \leqslant w$. Thus if $z \leqslant_R u$ and $z \leqslant w$, then $x \leqslant m$. The value $v_\hbox{min}$ is $m{-1}u$.

Summary

We haven't generated a summary for this paper yet.