Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Fund-Raising Performance for Start-up Projects from a Market Graph Perspective (2105.12918v1)

Published 27 May 2021 in cs.LG and cs.AI

Abstract: In the online innovation market, the fund-raising performance of the start-up project is a concerning issue for creators, investors and platforms. Unfortunately, existing studies always focus on modeling the fund-raising process after the publishment of a project but the predicting of a project attraction in the market before setting up is largely unexploited. Usually, this prediction is always with great challenges to making a comprehensive understanding of both the start-up project and market environment. To that end, in this paper, we present a focused study on this important problem from a market graph perspective. Specifically, we propose a Graph-based Market Environment (GME) model for predicting the fund-raising performance of the unpublished project by exploiting the market environment. In addition, we discriminatively model the project competitiveness and market preferences by designing two graph-based neural network architectures and incorporating them into a joint optimization stage. Furthermore, to explore the information propagation problem with dynamic environment in a large-scale market graph, we extend the GME model with parallelizing competitiveness quantification and hierarchical propagation algorithm. Finally, we conduct extensive experiments on real-world data. The experimental results clearly demonstrate the effectiveness of our proposed model.

Citations (15)

Summary

We haven't generated a summary for this paper yet.