Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Powers of paths and cycles in tournaments (2105.12484v1)

Published 26 May 2021 in math.CO

Abstract: We show that for every positive integer $k$, any tournament can be partitioned into at most $2{ck}$ $k$-th powers of paths. This result is tight up to the exponential constant. Moreover, we prove that for every $\varepsilon>0$ and every integer $k$, any tournament on $n\ge \varepsilon{-Ck}$ vertices which is $\varepsilon$-far from being transitive contains the $k$-th power of a cycle of length $\Omega(\varepsilon n)$; both bounds are tight up to the implied constants.

Summary

We haven't generated a summary for this paper yet.