Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Graph Cut Kernel for Ranked Data (2105.12356v2)

Published 26 May 2021 in cs.LG and stat.ML

Abstract: Many algorithms for ranked data become computationally intractable as the number of objects grows due to the complex geometric structure induced by rankings. An additional challenge is posed by partial rankings, i.e. rankings in which the preference is only known for a subset of all objects. For these reasons, state-of-the-art methods cannot scale to real-world applications, such as recommender systems. We address this challenge by exploiting the geometric structure of ranked data and additional available information about the objects to derive a kernel for ranking based on the graph cut function. The graph cut kernel combines the efficiency of submodular optimization with the theoretical properties of kernel-based methods. The graph cut kernel combines the efficiency of submodular optimization with the theoretical properties of kernel-based methods.

Summary

We haven't generated a summary for this paper yet.