Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diameter, radius and all eccentricities in linear time for constant-dimension median graphs (2105.12150v1)

Published 25 May 2021 in cs.DS and math.CO

Abstract: Median graphs form the class of graphs which is the most studied in metric graph theory. Recently, B\'en\'eteau et al. [2019] designed a linear-time algorithm computing both the $\Theta$-classes and the median set of median graphs. A natural question emerges: is there a linear-time algorithm computing the diameter and the radius for median graphs? We answer positively to this question for median graphs $G$ with constant dimension $d$, i.e. the dimension of the largest induced hypercube of $G$. We propose a combinatorial algorithm computing all eccentricities of median graphs with running time $O(2{O(d\log d)}n)$. As a consequence, this provides us with a linear-time algorithm determining both the diameter and the radius of median graphs with $d = O(1)$, such as cube-free median graphs. As the hypercube of dimension 4 is not planar, it shows also that all eccentricities of planar median graphs can be computed in $O(n)$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.