Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BASS: Boosting Abstractive Summarization with Unified Semantic Graph (2105.12041v1)

Published 25 May 2021 in cs.CL

Abstract: Abstractive summarization for long-document or multi-document remains challenging for the Seq2Seq architecture, as Seq2Seq is not good at analyzing long-distance relations in text. In this paper, we present BASS, a novel framework for Boosting Abstractive Summarization based on a unified Semantic graph, which aggregates co-referent phrases distributing across a long range of context and conveys rich relations between phrases. Further, a graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process by leveraging the graph structure. Specifically, several graph augmentation methods are designed to encode both the explicit and implicit relations in the text while the graph-propagation attention mechanism is developed in the decoder to select salient content into the summary. Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.

Citations (44)

Summary

We haven't generated a summary for this paper yet.