Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Theory and Design of Super-resolution Haptic Skins (2105.11914v2)

Published 25 May 2021 in cs.RO and eess.SP

Abstract: Haptic feedback is important to make robots more dexterous and effective in unstructured environments. High-resolution haptic sensors are still not widely available, and their application is often bound by the resolution-robustness dilemma. A route towards high-resolution and robust skin embeds a few sensor units (taxels) into a flexible surface material and uses signal processing to achieve sensing with super-resolution accuracy. We propose a theory for geometric super-resolution to guide the development of haptic sensors of this kind and link it to machine learning techniques for signal processing. This theory is based on sensor isolines and allows us to predict force sensitivity and accuracy in contact position and force magnitude as a spatial quantity. We evaluate the influence of different factors, such as elastic properties of the material, structure design, and transduction methods, using finite element simulations and by implementing real sensors. We empirically determine sensor isolines and validate the theory in two custom-built sensors with barometric units for 1D and 2D measurement surfaces. Using machine learning methods for the inference of contact information, our sensors obtain an unparalleled average super-resolution factor of over 100 and 1200, respectively. Our theory can guide future haptic sensor designs and inform various design choices.

Citations (2)

Summary

We haven't generated a summary for this paper yet.