Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting-GNN: Boosting Algorithm for Graph Networks on Imbalanced Node Classification (2105.11625v2)

Published 25 May 2021 in cs.LG and cs.CV

Abstract: The Graph Neural Network (GNN) has been widely used for graph data representation. However, the existing researches only consider the ideal balanced dataset, and the imbalanced dataset is rarely considered. Traditional methods such as resampling, reweighting, and synthetic samples that deal with imbalanced datasets are no longer applicable in GNN. This paper proposes an ensemble model called Boosting-GNN, which uses GNNs as the base classifiers during boosting. In Boosting-GNN, higher weights are set for the training samples that are not correctly classified by the previous classifier, thus achieving higher classification accuracy and better reliability. Besides, transfer learning is used to reduce computational cost and increase fitting ability. Experimental results indicate that the proposed Boosting-GNN model achieves better performance than GCN, GraphSAGE, GAT, SGC, N-GCN, and most advanced reweighting and resampling methods on synthetic imbalanced datasets, with an average performance improvement of 4.5%

Citations (25)

Summary

We haven't generated a summary for this paper yet.