Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-Rank Hankel Tensor Completion for Traffic Speed Estimation (2105.11335v2)

Published 21 May 2021 in cs.LG and eess.SP

Abstract: This paper studies the traffic state estimation (TSE) problem using sparse observations from mobile sensors. Most existing TSE methods either rely on well-defined physical traffic flow models or require large amounts of simulation data as input to train machine learning models. Different from previous studies, we propose a purely data-driven and model-free solution in this paper. We consider the TSE as a spatiotemporal matrix completion/interpolation problem, and apply spatiotemporal delay embedding to transform the original incomplete matrix into a fourth-order Hankel structured tensor. By imposing a low-rank assumption on this tensor structure, we can approximate and characterize both global and local spatiotemporal patterns in a data-driven manner. We use the truncated nuclear norm of a balanced spatiotemporal unfolding -- in which each column represents the vectorization of a small patch in the original matrix -- to approximate the tensor rank. An efficient solution algorithm based on the Alternating Direction Method of Multipliers (ADMM) is developed for model learning. The proposed framework only involves two hyperparameters, spatial and temporal window lengths, which are easy to set given the degree of data sparsity. We conduct numerical experiments on real-world high-resolution trajectory data, and our results demonstrate the effectiveness and superiority of the proposed model in some challenging scenarios.

Citations (33)

Summary

We haven't generated a summary for this paper yet.