Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DaN+: Danish Nested Named Entities and Lexical Normalization (2105.11301v1)

Published 24 May 2021 in cs.CL

Abstract: This paper introduces DaN+, a new multi-domain corpus and annotation guidelines for Danish nested named entities (NEs) and lexical normalization to support research on cross-lingual cross-domain learning for a less-resourced language. We empirically assess three strategies to model the two-layer Named Entity Recognition (NER) task. We compare transfer capabilities from German versus in-language annotation from scratch. We examine language-specific versus multilingual BERT, and study the effect of lexical normalization on NER. Our results show that 1) the most robust strategy is multi-task learning which is rivaled by multi-label decoding, 2) BERT-based NER models are sensitive to domain shifts, and 3) in-language BERT and lexical normalization are the most beneficial on the least canonical data. Our results also show that an out-of-domain setup remains challenging, while performance on news plateaus quickly. This highlights the importance of cross-domain evaluation of cross-lingual transfer.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Barbara Plank (130 papers)
  2. Kristian Nørgaard Jensen (5 papers)
  3. Rob van der Goot (38 papers)
Citations (33)

Summary

We haven't generated a summary for this paper yet.