Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform interpolation via nested sequents and hypersequents (2105.10930v1)

Published 23 May 2021 in cs.LO

Abstract: A modular proof-theoretic framework was recently developed to prove Craig interpolation for normal modal logics based on generalizations of sequent calculi (e.g., nested sequents, hypersequents, and labelled sequents). In this paper, we turn to uniform interpolation, which is stronger than Craig interpolation. We develop a constructive method for proving uniform interpolation via nested sequents and apply it to reprove the uniform interpolation property for normal modal logics $\mathsf{K}$, $\mathsf{D}$, and $\mathsf{T}$. We then use the know-how developed for nested sequents to apply the same method to hypersequents and obtain the first direct proof of uniform interpolation for $\mathsf{S5}$ via a cut-free sequent-like calculus. While our method is proof-theoretic, the definition of uniform interpolation for nested sequents and hypersequents also uses semantic notions, including bisimulation modulo an atomic proposition.

Citations (2)

Summary

We haven't generated a summary for this paper yet.