Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Crack Detection Using Convolutional Neural Network (2105.10892v1)

Published 23 May 2021 in eess.IV

Abstract: To improve the efficiency and reduce the labour cost of the renovation process, this study presents a lightweight Convolutional Neural Network (CNN)-based architecture to extract crack-like features, such as cracks and joints. Moreover, Transfer Learning (TF) method was used to save training time while offering comparable prediction results. For three different objectives: 1) Detection of the concrete cracks; 2) Detection of natural stone cracks; 3) Differentiation between joints and cracks in natural stone; We built a natural stone dataset with joints and cracks information as complementary for the concrete benchmark dataset. As the results show, our model is demonstrated as an effective tool for industry use.

Citations (3)

Summary

We haven't generated a summary for this paper yet.