Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Realization of Augmented Intelligence in Dermatology: Advances and Future Directions (2105.10477v1)

Published 21 May 2021 in cs.CV, eess.IV, and q-bio.QM

Abstract: AI algorithms using deep learning have advanced the classification of skin disease images; however these algorithms have been mostly applied "in silico" and not validated clinically. Most dermatology AI algorithms perform binary classification tasks (e.g. malignancy versus benign lesions), but this task is not representative of dermatologists' diagnostic range. The American Academy of Dermatology Task Force on Augmented Intelligence published a position statement emphasizing the importance of clinical validation to create human-computer synergy, termed augmented intelligence (AuI). Liu et al's paper, "A deep learning system for differential diagnosis of skin diseases" represents a significant advancement of AI in dermatology, bringing it closer to clinical impact. However, significant issues must be addressed before this algorithm can be integrated into clinical workflow. These issues include accurate and equitable model development, defining and assessing appropriate clinical outcomes, and real-world integration.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Roxana Daneshjou (19 papers)
  2. Carrie Kovarik (1 paper)
  3. Justin M Ko (2 papers)