Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bregman Proximal Point Algorithm Revisited: A New Inexact Version and its Inertial Variant (2105.10370v3)

Published 21 May 2021 in math.OC

Abstract: We study a general convex optimization problem, which covers various classic problems in different areas and particularly includes many optimal transport related problems arising in recent years. To solve this problem, we revisit the classic Bregman proximal point algorithm (BPPA) and introduce a new inexact stopping condition for solving the subproblems, which can circumvent the underlying feasibility difficulty often appearing in existing inexact conditions when the problem has a complex feasible set. Our inexact condition also covers several existing inexact conditions as special cases and hence makes our inexact BPPA (iBPPA) more flexible to fit different scenarios in practice. Moreover, inspired by Nesterov's acceleration technique, we develop an inertial variant of our iBPPA, denoted by V-iBPPA, and establish the iteration complexity of $O(1/k{\lambda})$, where $\lambda\geq1$ is a quadrangle scaling exponent of the kernel function. In particular, when the proximal parameter is a constant and the kernel function is strongly convex with Lipschitz continuous gradient (hence $\lambda=2$), our V-iBPPA achieves a faster rate of $O(1/k2)$ just as existing accelerated inexact proximal point algorithms. Some preliminary numerical experiments for solving the standard OT problem are conducted to show the convergence behaviors of our iBPPA and V-iBPPA under different inexactness settings. The experiments also empirically verify the potential of our V-iBPPA on improving the convergence speed.

Summary

We haven't generated a summary for this paper yet.