Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predictive control barrier functions: Enhanced safety mechanisms for learning-based control (2105.10241v3)

Published 21 May 2021 in eess.SY and cs.SY

Abstract: While learning-based control techniques often outperform classical controller designs, safety requirements limit the acceptance of such methods in many applications. Recent developments address this issue through so-called predictive safety filters, which assess if a proposed learning-based control input can lead to constraint violations and modifies it if necessary to ensure safety for all future time steps. The theoretical guarantees of such predictive safety filters rely on the model assumptions and minor deviations can lead to failure of the filter putting the system at risk. This paper introduces an auxiliary soft-constrained predictive control problem that is always feasible at each time step and asymptotically stabilizes the feasible set of the original safety filter, thereby providing a recovery mechanism in safety-critical situations. This is achieved by a simple constraint tightening in combination with a terminal control barrier function. By extending discrete-time control barrier function theory, we establish that the proposed auxiliary problem provides a `predictive' control barrier function. The resulting algorithm is demonstrated using numerical examples.

Citations (39)

Summary

We haven't generated a summary for this paper yet.