Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The prescribed Chern scalar curvature problem (2105.10220v2)

Published 21 May 2021 in math.DG and math.CV

Abstract: The paper is an attempt to resolve the prescribed Chern scalar curvature problem. We look for solutions within the conformal class of a fixed Hermitian metric. We divide the problem in three cases, according to the sign of the Gauduchon degree, that we analyse separately. In the case where the Gauduchon degree is negative, we prove that every non-identically zero and non-positive function is the Chern scalar curvature of a unique metric conformal to the fixed one. Moreover, if there exists a balanced metric with zero Chern scalar curvature, we prove that every smooth function changing sign with negative mean value is the Chern scalar curvature of a metric conformal to the balanced one.

Summary

We haven't generated a summary for this paper yet.