Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training Bi-Encoders for Word Sense Disambiguation (2105.10146v1)

Published 21 May 2021 in cs.CL

Abstract: Modern transformer-based neural architectures yield impressive results in nearly every NLP task and Word Sense Disambiguation, the problem of discerning the correct sense of a word in a given context, is no exception. State-of-the-art approaches in WSD today leverage lexical information along with pre-trained embeddings from these models to achieve results comparable to human inter-annotator agreement on standard evaluation benchmarks. In the same vein, we experiment with several strategies to optimize bi-encoders for this specific task and propose alternative methods of presenting lexical information to our model. Through our multi-stage pre-training and fine-tuning pipeline we further the state of the art in Word Sense Disambiguation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Harsh Kohli (6 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.