Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal convolutional networks predict dynamic oxygen uptake response from wearable sensors across exercise intensities (2105.09987v2)

Published 20 May 2021 in cs.LG

Abstract: Oxygen consumption (VO$_2$) provides established clinical and physiological indicators of cardiorespiratory function and exercise capacity. However, VO$_2$ monitoring is largely limited to specialized laboratory settings, making its widespread monitoring elusive. Here, we investigate temporal prediction of VO$_2$ from wearable sensors during cycle ergometer exercise using a temporal convolutional network (TCN). Cardiorespiratory signals were acquired from a smart shirt with integrated textile sensors alongside ground-truth VO$_2$ from a metabolic system on twenty-two young healthy adults. Participants performed one ramp-incremental and three pseudorandom binary sequence exercise protocols to assess a range of VO$_2$ dynamics. A TCN model was developed using causal convolutions across an effective history length to model the time-dependent nature of VO$_2$. Optimal history length was determined through minimum validation loss across hyperparameter values. The best performing model encoded 218 s history length (TCN-VO$_2$ A), with 187 s, 97 s, and 76 s yielding less than 3% deviation from the optimal validation loss. TCN-VO$_2$ A showed strong prediction accuracy (mean, 95% CI) across all exercise intensities (-22 ml.min${-1}$, [-262, 218]), spanning transitions from low-moderate (-23 ml.min${-1}$, [-250, 204]), low-high (14 ml.min${-1}$, [-252, 280]), ventilatory threshold-high (-49 ml.min${-1}$, [-274, 176]), and maximal (-32 ml.min${-1}$, [-261, 197]) exercise. Second-by-second classification of physical activity across 16090 s of predicted VO$_2$ was able to discern between vigorous, moderate, and light activity with high accuracy (94.1%). This system enables quantitative aerobic activity monitoring in non-laboratory settings across a range of exercise intensities using wearable sensors for monitoring exercise prescription adherence and personal fitness.

Citations (14)

Summary

We haven't generated a summary for this paper yet.