Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dependency Parsing with Bottom-up Hierarchical Pointer Networks (2105.09611v2)

Published 20 May 2021 in cs.CL

Abstract: Dependency parsing is a crucial step towards deep language understanding and, therefore, widely demanded by numerous Natural Language Processing applications. In particular, left-to-right and top-down transition-based algorithms that rely on Pointer Networks are among the most accurate approaches for performing dependency parsing. Additionally, it has been observed for the top-down algorithm that Pointer Networks' sequential decoding can be improved by implementing a hierarchical variant, more adequate to model dependency structures. Considering all this, we develop a bottom-up-oriented Hierarchical Pointer Network for the left-to-right parser and propose two novel transition-based alternatives: an approach that parses a sentence in right-to-left order and a variant that does it from the outside in. We empirically test the proposed neural architecture with the different algorithms on a wide variety of languages, outperforming the original approach in practically all of them and setting new state-of-the-art results on the English and Chinese Penn Treebanks for non-contextualized and BERT-based embeddings.

Citations (12)

Summary

We haven't generated a summary for this paper yet.