Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Algebraic Characterisation of First-Order Logic with Neighbour (2105.09368v1)

Published 19 May 2021 in cs.LO and cs.FL

Abstract: We give an algebraic characterisation of first-order logic with the neighbour relation, on finite words. For this, we consider languages of finite words over alphabets with an involution on them. The natural algebras for such languages are involution semigroups. To characterise the logic, we define a special kind of semidirect product of involution semigroups, called the locally hermitian product. The characterisation theorem for FO with neighbour states that a language is definable in the logic if and only if it is recognised by a locally hermitian product of an aperiodic commutative involution semigroup, and a locally trivial involution semigroup. We then define the notion of involution varieties of languages, namely classes of languages closed under Boolean operations, quotients, involution, and inverse images of involutory morphisms. An Eilenberg-type correspondence is established between involution varieties of languages and pseudovarieties of involution semigroups.

Summary

We haven't generated a summary for this paper yet.