Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hunter in the Dark: Discover Anomalous Network Activity Using Deep Ensemble Network (2105.09157v4)

Published 19 May 2021 in cs.CR

Abstract: Machine learning (ML)-based intrusion detection systems (IDSs) play a critical role in discovering unknown threats in a large-scale cyberspace. They have been adopted as a mainstream hunting method in many organizations, such as financial institutes, manufacturing companies and government agencies. However, existing designs achieve a high threat detection performance at the cost of a large number of false alarms, leading to alert fatigue. To tackle this issue, in this paper, we propose a neural-network-based defense mechanism named DarkHunter. DarkHunter incorporates both supervised learning and unsupervised learning in the design. It uses a deep ensemble network (trained through supervised learning) to detect anomalous network activities and exploits an unsupervised learning-based scheme to trim off mis-detection results. For each detected threat, DarkHunter can trace to its source and present the threat in its original traffic format. Our evaluations, based on the UNSW-NB15 dataset, show that DarkHunter outperforms the existing ML-based IDSs and is able to achieve a high detection accuracy while keeping a low false positive rate.

Citations (1)

Summary

We haven't generated a summary for this paper yet.