Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic chemotaxis system with logistic source and nonlinear production (2105.08942v2)

Published 19 May 2021 in math.AP

Abstract: This paper deals with the quasilinear parabolic-elliptic chemotaxis system with logistic source and nonlinear production, \begin{equation*} \begin{cases} u_t=\nabla \cdot (D(u) \nabla u) - \nabla \cdot (S(u)\nabla v) + \lambda u - \mu u{\kappa}, & x\in\Omega,\ t>0, \[1mm] 0=\Delta v - \overline{M_f}(t) + f(u), & x\in\Omega,\ t>0, \end{cases} \end{equation*} where $\lambda>0$, $\mu>0$, $\kappa>1$ and $\overline{M_f}(t):=\frac{1}{|\Omega|}\int_{\Omega} f(u(x,t))\,dx$, and $D$, $S$ and $f$ are functions generalizing the prototypes \begin{align*} D(u)=(u+1){m-1},\quad S(u)=u(u+1){\alpha-1}\quad\mbox{and}\quad f(u)=u\ell \end{align*} with $m\in\mathbb{R}$, $\alpha>0$ and $\ell>0$. In the case $m=\alpha=\ell=1$, Fuest (NoDEA Nonlinear Differential Equations Appl.; 2021; 28; 16) obtained conditions for $\kappa$ such that solutions blow up in finite time. However, in the above system boundedness and finite-time blow-up of solutions have been not yet established. This paper gives boundedness and finite-time blow-up under some conditions for $m$, $\alpha$, $\kappa$ and $\ell$.

Summary

We haven't generated a summary for this paper yet.