Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LCP-RIT at SemEval-2021 Task 1: Exploring Linguistic Features for Lexical Complexity Prediction (2105.08780v1)

Published 18 May 2021 in cs.CL

Abstract: This paper describes team LCP-RIT's submission to the SemEval-2021 Task 1: Lexical Complexity Prediction (LCP). The task organizers provided participants with an augmented version of CompLex (Shardlow et al., 2020), an English multi-domain dataset in which words in context were annotated with respect to their complexity using a five point Likert scale. Our system uses logistic regression and a wide range of linguistic features (e.g. psycholinguistic features, n-grams, word frequency, POS tags) to predict the complexity of single words in this dataset. We analyze the impact of different linguistic features in the classification performance and we evaluate the results in terms of mean absolute error, mean squared error, Pearson correlation, and Spearman correlation.

Citations (10)

Summary

We haven't generated a summary for this paper yet.