Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Computational Complexity of ReLU Network Training Parameterized by Data Dimensionality (2105.08675v3)

Published 18 May 2021 in cs.LG, cs.CC, cs.DS, cs.NE, and stat.ML

Abstract: Understanding the computational complexity of training simple neural networks with rectified linear units (ReLUs) has recently been a subject of intensive research. Closing gaps and complementing results from the literature, we present several results on the parameterized complexity of training two-layer ReLU networks with respect to various loss functions. After a brief discussion of other parameters, we focus on analyzing the influence of the dimension $d$ of the training data on the computational complexity. We provide running time lower bounds in terms of W[1]-hardness for parameter $d$ and prove that known brute-force strategies are essentially optimal (assuming the Exponential Time Hypothesis). In comparison with previous work, our results hold for a broad(er) range of loss functions, including $\ellp$-loss for all $p\in[0,\infty]$. In particular, we extend a known polynomial-time algorithm for constant $d$ and convex loss functions to a more general class of loss functions, matching our running time lower bounds also in these cases.

Citations (20)

Summary

We haven't generated a summary for this paper yet.